Guignardia citricarpa, a plant pathogen which causes the disease called Citrus Black Spot (CBS), was successfully transformed via *Agrobacterium tumefaciens*-mediated transformation. The strain EHA105 of *A. tumefaciens* bearing the vector pPZP201BK was used for transformation. The *bar* gene, rendering ammonium glufosinate resistant transformants, and the *gfp* gene were employed as selection markers. The protocol of *Agrobacterium tumefaciens*-mediated transformation described by Covert et al. (2001) were adapted for the present work. Some of the changes were: i) Initially, spores of *G. citricarpa* were submitted to a temperature of 40ºC for 5 minutes. Such procedure increased the germination rate making agro transformation easier; ii) The culture medium pH was changed to 5.8, since this is the optimum pH for *G. citricarpa* to grow. iii) After co-cultivation between *G. citricarpa* and *A. tumefaciens*, selective medium was added to the membranes instead of transferring them to the selective medium. These changes significantly contributed for the success of agro transformation. Microscopic observations to confirm agro transformation were carried out using epifluorescence microscopy. Hyphaes and spores of *G. citricarpa*, which grew in the selective medium were observed and compared to control colonies and colonies bearing the *gfp* gene. The stability of T-DNA integration into the potential transformants was verified by growing them on minimum medium containing an amino acid solution but no ammonium glufosinate. The clones were transferred to selective medium after six consecutives periodic transfers on minimum medium. All transformants were still ammonium glufosinate resistant, therefore indicating mitotic stability. Molecular analysis of the potential transformants was done through PCR. The primers barR (TCAGATCTCGACGGG) and barF (ATGAGCGAACGACGC) were used to detect the *bar* gene. *Agrobacterium tumefaciens*-mediated transformation was an efficient method to obtain ammonium glufosinate resistant transformants. Other methods of T-DNA insertion had already been tested, but none showed positive results. Having transformants is essential to study the interaction between plants and its pathogens, aiming the control of the disease.

Financial Support: CNPq and FUNDECITRUS